YEAR 2

Additition \& Subtraction

- Add 2-digit numbers (not crossing 10)
- Add 2-digit numbers (crossing 10)
- Subtract 2-digits (not crossing 10)

Block 2 - Week 7

Lesson 1

Step: Add 2-digit numbers
 (not crossing 10)

(Practical)

Use the Base 10 to help you complete the addition calculations:

Tens	Ones
	\square 0
	 0
5	9

Column addition:

Number sentence:
$24+35=59$

Use the Base 10 to help you complete the addition calculations:

Tens	Ones
WITITIT	『]
	$\begin{gathered} \square \square \\ \square \square \end{gathered}$
6	6

Column addition:

Number sentence:
$32+34=66$

Use the Base 10 to help you complete the addition calculations:

Column addition:

Number sentence:
$35+24=39$

Use the Base 10 to help you complete the addition calculations:

Tens	Ones
	\square
	\square \square

Column addition:

Number sentence:
$43+25=68$

Practical:

Select a calculation card and build it using equipment.
Solve and represent the calculation using column addition and a number sentence.

Addition problem	Column addition			Part-whole model
$18+31=\underline{49}$ 8 ones + 1 ones = $\quad 9$ ones. 1 ten +3 tens $=\underline{4}$ tens. 4 \qquad tens + 9 \qquad ones = \qquad		$\begin{gathered} 1 \\ \hline \hline 3 \\ \hline \hline 4 \end{gathered}$	8 1 9	
$\begin{aligned} & 26+42=68 \\ & 6 \text { ones }+2 \text { ones }=\boxed{8} \text { ones. } \\ & 2 \text { tens }+4 \text { tens }=\ldots 6 \text { tens. } \\ & 6 \text { tens }+\ldots 8 \text { ones }=68 \end{aligned}$		$\begin{gathered} 2 \\ \hline \hline 4 \\ \hline \hline 6 \end{gathered}$	6 2 8	

Addition problem	Column addition			Part-whole model
$\left\{\begin{array}{l} 35+21=56 \\ 5 \text { ones }+1 \text { ones }=\frac{6}{2} \text { ones. } \\ 3 \text { tens }+2 \text { tens }=\ldots \text { tens. } \\ 5 \text { tens }+\ldots 6 \text { ones }=\$ 56 \end{array}\right.$		$\begin{aligned} & 3 \\ & \hline \hline 2 \\ & \hline \hline \end{aligned}$		
$42+57=\ldots 9$ 2 ones +7 ones $=-\quad 9$ ones. 4 tens +5 tens $=$ \qquad 9 tens. \qquad 9 tens + \qquad 9 ones $=$ 99 \qquad		$\begin{aligned} & 4 \\ & \hline \hline 5 \\ & \hline \hline 9 \end{aligned}$		

Spot and explain the mistake made．

Tens	Ones
WITM	（6）
WITITM	
TMITITI	『 『 『
WITITIT	
WMOM	
5	5

Column addition：

The tens column has been completed incorrectly．
There are 5 tens（not 50 tens）．

Complete the column addition calculations to make them true.

A

How many different ways can B be completed?

Lesson 2

Step: Add 2-digit numbers
 (crossing 10)

(Practical)

Expanded column addition:

Tens	Ones	
	\square	
\square	\square	
\square	\square	
	\square	
40	12	

Expanded column addition shows the value of each digit.

Compact column addition:

Tens	Ones
	\square \square
	\square \square
4	2

Compact column addition shows the exchange of ten ones to one ten.

Practical:

Select a calculation card and build it using Base 10. Solve the calculation and show this as a column addition.

Remember... ten ones can be exchanged for one ten.

Lesson 3

Step: Add 2-digit numbers
 (crossing 10)

Expanded column addition:

Tens	Ones
	\square
\square	\square
	\square
	\square
	\square

Column addition:

Number sentence:

Expanded column addition:

Tens	Ones
	$\begin{gathered} \square \square \square \\ \square \square \end{gathered}$
WM00	$\begin{array}{llll} \square & \square & \square & \square \\ \square & \square & \square & \square \end{array}$
50	13

Column addition:

Number sentence:

Expanded column addition：

Tens	Ones
WITITM	①］『
Wumbloul	［ ］a
WMTM	的（1）
TITITIT	
TMTMTM	］『
Wmintm	（1）\square^{\square}
\cdots	
80	15

Column addition：

Number sentence：
$39+56=95$

Compact column addition:

Tens	Ones
	a \square \square
	\square
	\square

Column addition:

Compact column addition：

Tens	Ones
WIITITI	
Wmom	
Womb	『 『 『 『
WITMITIT	
Wumb	
Wumbumber	
\square	
7	1

Column addition：

Complete:

Addition problem	Column addition	Part-whole model
$\begin{aligned} & 33+65=\underline{98} \\ & 3 \text { ones }+5 \text { ones }=_8 \text { ones. } \\ & 3 \text { tens }+6 \text { tens }=_\frac{9}{} \text { tens. } \\ & 9 \text { tens }+\ldots 8 \text { ones }=98 \end{aligned}$	$\begin{array}{\|r\|r\|} \hline 3 & 3 \\ +\begin{array}{\|r\|r\|} \hline \hline 6 & 5 \\ \hline \hline 9 & 8 \\ \hline \end{array} \\ \hline \end{array}$	

Complete:

Addition problem	Column addition	Part-whole model
$\begin{aligned} & 24+53=\frac{77}{} \\ & 4 \text { ones }+3 \text { ones }=\boxed{7} \text { ones. } \\ & 2 \text { tens }+5 \text { tens }=\frac{7}{\text { tens. }} \\ & 7 \text { tens }+\ldots 7 \text { ones }=\$ 77 \end{aligned}$	$\begin{array}{r\|r\|} \hline 2 & 4 \\ +\begin{array}{\|r\|} \hline 7 \\ \hline \hline 7 \\ \hline \hline 7 \\ \hline \end{array} \\ \hline \end{array}$	

Place all four digit cards in the number sentence below.

What is the largest total you can make? $\quad 52+43=95$
What is the smallest total you can make? $25+34=59$

4 tens +3 ones +2 tens $+\ldots$ ones

The missing number of ones is less than 3.

List all possible ways of completing the calculation.

$$
\begin{aligned}
& 43+22=65 \\
& 43+21=64 \\
& 43+20=63
\end{aligned}
$$

Lesson 4

Step: Subtract with 2-digits (not crossing 10)

(Practical)

Use Base 10 to help you complete the subtraction calculations.

39-27		3	9
		2	7
		1	2
54-32	-		
TTTTATMTM \qquad		5	4
		3	2
		2	2

Use Base 10 to help you complete the subtraction calculations.

Practical:

Select a calculation card and build it using Base 10.

 Solve the calculation and show this as a column subtraction.

Lesson 5

Step: Subtract with 2-digits (not crossing 10)

Use Base 10 to help you complete the subtraction calculations.

I have complete the subtraction calculation correctly.

$$
7 8 - 3 \longdiv { 4 } = 4 3
$$

Is Jack correct?
Explain your answer.
No, $78-34=44$.
The number in the box should be 5 as $78-35=43$.

a) How many more marbles does Asha have than Jess?
b) How many more marbles does Dom have than Asha?

c) How many more marbles does Dom have than Jess?

$35-11=24$

